Skip to main content

Project TouCans and the Squizzled PA FETs

Or, how I learned to miss hard resetting RFI.


Up until about a week and a half ago, Project TouCans and the Flying Rockmite before it had never blown a final amplifier transistor. Our good fortune with transistors was caused in large part not by any particular genius in the construction or handling of the radio, but almost entirely to radio frequency interference. When too much RF energy was reflected back into the radio on key down, the Rockmite's picokeyer would reset chirping out an only slightly irritated 73 in Morse code. Hence, we couldn't use the rig, hence we changed the antenna or repaired the rig, or turned down the bias voltage on the Tuna Topper final until we could use the rig without resetting that little keyer.

Then! Then we did something that was both cool and, (we'd later find out), somewhat daunting. We removed the last of the wires that attached Project TouCans to the Earth and our RFI just went away. Which has been great for signal quality, and as it tuns out it's occasionally been hell on the amplifier.

At present count, we're three transistors down.

After the rig dropped from about 15 feet up to the ground recently, I did a quick inspection and then, (why!!!!??? why did I do that???), decided I'd measure the rig's output power since I hadn't done that in a while. The power meter reported 3 Watts. The rig nominally outputs 5 Watts. I adjusted the bias voltage on the Tuna Topper and.. still 3 Watts. I increased the voltage two more times, and? The final transistor blew out. (Eventually taking the rechargeable battery with it.) KO6BTY and I completed our debug yesterday, reattached the power meter, (which apparently no longer works since it reported 0 Watts at all bias voltages), and fairly quickly blew out the amp transistor again as I blithely upped the bias voltage.

Turns out I can't do that anymore. our keyer RFI safeguard is gone.

Interestingly, we did discover that when the bias is set to low on the amp, there's a whistling feedback tone that appears in the audio output. When the amp is biased correctly, and before it's biased too high and takes out the transistor, (i.e. in nominal operating mode), the whistling tone goes away. Audio debug lives on to a certain extent.

We'll be dropping in transistor number four tomorrow. I'll keep you posted.



Comments

Popular posts from this blog

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim