Skip to main content

Intermediate State of Superconductors

I've been following a literature search for the last few days that's led to a very interesting point.  Superconducting tin has different quench points, (via magnetic field), depending on the orientation of the direction of current flow in the sample and the direction of the applied external magnetic field[1].  My next job will be to determine if Pb has the same qualities, and if so what that means for the experiment.

Pb was chosen as the sample for our experiment because of the relatively low magnetic field strengths at which it can be quenched.  It was mentioned by Hirsch in one of his articles predicting Bremsstrahlung radiation from quenched superconductors that the super conductor should be quenched 'quickly'.  It's unclear at the moment what effect this squirmy quality of supercurrents vs. magnetic field orientation will have.

Flow of the Literature Search:
And now, just a few notes on how I arrived at the Shubnikov article.  Hirsch who originated the theory that predicted the Bremsstrahlung we're trying to detect wrote an article that mentioned the similarities between superconductors and superfluids[4].  In that article, he references Mendelssohn who thought that superconductors might behave in the same way as liquid helium via what he termed zero point pressure.  Upon searching for more articles by Mendelssohn, I came up with an article he wrote with Keeley [3] where there experimental evidence of frozen in fluxes sounded very much like type II superconductor behavior with pinned fluxes.  That led to a perusal of Abrikosov's Nobel prize lecture on type II superconductors which ultimately led to Shubnikov's article.  Abrikosov credits Shubnikov's data as helping to confirm his theories on type II superconductors.

History Notes:
Mendelssohn in addition to his superconductor work in the 1930's also wrote a book on the Great Pyramids in the 1970's [6].

Shubnikov was exectued by the KGB in 1936, (the same year he published the paper I reference), for allegedly being involved in an 'anti-Soviet strike'.

References:
1.  Shubnikov's article in which the change in quench field vs current direction is observed
http://www.nature.com/nature/journal/v139/n3518/abs/139589b0.html

2.  Peierls article in which the intermediate state is defined:
http://rspa.royalsocietypublishing.org/content/155/886/613.full.pdf
doi: 10.1098/rspa.1936.0123,

3.  Keeley and Mendelssohn experimenting with frozen in flux
http://rspa.royalsocietypublishing.org/content/154/882/378.full.pdf
doi: 10.1098/rspa.1936.0058

4.  Hirsch on the similarities between superconductors and superfluids and the Meissner effect
doi: 10.1088/0031-8949/85/03/035704

5.  Abrikosov's Nobel prize lecture on type II superconductors
http://www.nobelprize.org/nobel_prizes/physics/laureates/2003/abrikosov-lecture.pdf

6.  Mendelssohn's book on pyramids
http://books.google.com/books?id=u69xAAAAMAAJ&q=the+riddle+of+the+pyramids&dq=the+riddle+of+the+pyramids&hl=en&sa=X&ei=0qQ9UZvrA-iC2gXE7IGwCA&ved=0CDYQ6AEwAA

Picture of the Day:
From 3/11/13

Comments

Popular posts from this blog

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim