Skip to main content

Of Solenoids and Spherical Electromagnets

Working on modelling the magnetic field that will be used to quench a 4 inch lead superconducting sphere in the h-ray experiment.  The first trial was just to place the superconductor in a surrounding solenoid electromagnet.  The correct magnitude of field can be obtained that way, but the uniformity isn't great.  Adding more layers of windings increases the field strength but doesn't help with the uniformity.  Each level of coils basically linearly increases the field strength.  The percent change in field with length along the solenoid, (shown on the x axis below), stays pretty much the same though.  The graphs shown are for one, two, and three layers of coils.

While looking around for a coil design that would give a more uniform field I came across a patent[1] that described a spherically wound electromagnet and promised a uniform field within the sphere.  I tried modified the model to handle a spherically wound coil and got the results along the up-down axis, (z), and the equatorial axis, (r), of the coil shown in the graphs below.  The z direction has a very nice improvement.  The radial direction, even with it's 17% or so variance between the field at the center and the edge of the coil is still far better than the plain-old solenoid designs.


John Shearing said…
Have you looked at this type of spherical electromagnet for your experiment.

This is the picture of it:

This is the patent application which is now in the public domain and free for all to use:

I invented it years ago but never had the opportunity to experiment with it.

Good Luck

Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…