Skip to main content

On Division and Balloons

Number 1 is learning division.  We're working on two different techniques.  I'm not sure which is working better, here they are.

Method the first:
When presented with the problem 12/4, we tell her to think about having twelve things she has to divide evenly between herself, her sibs, (Number 2, and Number 3), and a friend.  The downside of this version, is she has to guess.  The whole thing becomes experimental, (which has value in and of itself).  Number 1 draws twelve balloons, (she invented the technique), and then tries different groupings of the balloons until she finds one that's fair to all the sibs and their friend.  The upside is that there's a reason to want to divide in the first place; there's an application.

Method the second:
When presented with the same problem, we ask her how many groups of four she can make out of twelve things.  One of the upsides of this method is that it's mechanical.  No. 1 once again starts with a drawing of balloons, but this time, she just counts off four balloons, (or what ever the number in the divisor is), at a time.  When she's done making groups of four, she has the answer: three.  Another advantage of this method is that it carries over into long division quite nicely.  The downside of this method is, of course, the converse of the upside of the first: there's no apparent application; it's a parlor trick.

What's your favorite?
We could always use another way to think about math problems.  What's your favorite method for teaching division?

Comments

Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the: