Skip to main content
Here's today's special relativistic EM question.  Can the Thomas precession be shown to be a special case of the perihelion advance of relativistic elliptical orbits?  Any ideas?  Here's what's going on:

We've been deriving the special relativistic  orbit of a charged particles around another fixed charged particle.  At the end of the day, you wind up with a perihelion advance which is a fancy way to say that major axis of the elliptical orbit won't stay put.  It swivels around, (orbits), the charged particle as well.  The advance angle of the major axis winds up being\\

$\delta\phi = 2\pi\left[\left(1 - \dfrac{\kappa^2}{l^2}\right)^{-1/2} - 1\right]$

Which is very, very, similar to the Thomas angle for the spin precession, or gyroscopic precession along a circular orbit at special relativistic speeds:\\

$\delta\phi = 2\pi\left[cosh\left(w\right) - 1\right]$

$= 2\pi\left[\left(1 - \dfrac{v^2}{c^2}\right)^{-1/2} - 1\right]$

In the expression for the perihelion advance, $\kappa = eQ$ where $e$ is the charge of the orbiting particle and $Q$ is the charge of the fixed particle.  $l$ is the angular momentum and is written as $l = mr^2\left(\dfrac{d\phi}{d\tau}\right)$

Just a little more massaging of the above before I'm done for the day.  For a circular orbit, $\dfrac{d\phi}{d\tau} = \omega$ is constant and we can write $l = m\omega r^2$.  If we plug this in as to the Perihelion advance equation we wind up with

$\dfrac{\kappa^2}{l^2} = \dfrac{Q^2 e^2}{m^2v^2r^2}$ where $v = \omega r$

Here's where I get into trouble for playing fast and loose with things that migh actually be rapidities instead of velocities like $v$ above.  However, if you carry the simplificatins a bit further out, I believe you wind up with something that looks like an units of potential energy over momentum squared.

$\dfrac{Q^2 e^2}{m^2v^2r^2} = \dfrac{F}{m} \dfrac{1}{mv^2} \sim \dfrac{a}{E}$

Notes du jour:

Comments

Popular posts from this blog

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the: