Skip to main content

Finding Quenching Field Magnitude Using Levitation Force: Lab Book 2014_09_29


Summary:  Working more on using the superconductor to detect its own quenching field.  The initial setup is shown below.  The quenching test is described in the following.  A YBCO superconductor is placed between the poles of a very uniform magnet and then cooled into its superconducting state.  The field frozen into the sample at the state transition opposes the fringing fields on the magnet.  However, had the magnetic field been strong enough to quench the superconductor, the results would have been the pendulum swinging freely beyond the pole pieces' diameter until it encountered a field less than its critical field at which point, it would have re-entered the superconducting state and frozen in those field lines, suspending itself.  There's another realization of this process that will be tested today.  The pendulum is again suspended in a uniform field and the field is slowly increased.  It is suspected the sample will be deflected until the quenching field is reached at which point, the pendulum will fall back to its equilibrium vertical position.  By measuring the angle of the pendulum, the levitation field could also be determined.




The superconductor is placed in a Styrofoam cup supported on a wood plank wedged between the two poles of the magnet.   The magnet gap was set at 2 and 9/16 inches.  This could be much smaller for the sample used here, I just need to find a smaller reservoir.

There are two movies.  The first contains the cooler alarm going off.  After the alarm went off, the magnet current supply was slowly ramped down, and water was added to the reservoir after the cooler was switched off.  The cooler alarm did not start again after it was turned back on, nor when the magnet supply was ramped up to 49 amps. 

The second movie detailed the superconductor not moving while the reservoir slipped out from underneath it. 
We’re measuring the magnetic field with a F. W Bell 5180 Hall Effect Gauss meter.
7.32 – 7.35 kG at a 2 and 9/16 inch gap.

12.8 kG at the gap setting, 1 and 1/8 inch gap setting.
A small Dewar was carved from blue Styrofoam to fit in the smaller gap space, see the first picture below.  The Dewar was suspended as a pendulum between the poles of the magnet as shown in the second picture below.  Dental floss was used to support the Dewar pendulum from the upper yoke of the electromagnet.

The quenching test was as follows:
A YBCO superconductor is placed between the poles of a very uniform magnet and then cooled into its superconducting state.  The field frozen into the sample at the state transition opposes the fringing fields on the magnet.  However, had the magnetic field been strong enough to quench the superconductor, the results would have been the pendulum swinging freely beyond the pole pieces' diameter until it encountered a field less than its critical field at which point, it would have re-entered the superconducting state and frozen in those field lines, suspending itself.  There's another realization of this process that will be tested today.  The pendulum is again suspended in a uniform field and the field is slowly increased.  It is suspected the sample will be deflected until the quenching field is reached at which point, the pendulum will fall back to its equilibrium vertical position.  By measuring the angle of the pendulum, the levitation field could also be determined.




The fringe field produced at the edge of the electromagnet pole, mentioned above, is shown in the diagram below from Lawrence's cyclotron patent application.  Note that the 'magnetic lines of force' become less uniform as the edge of the pole piece is approached.



The small YBCO sample did not quench at this gap and field setting.
Note in the video that at 35 amps during the ramp down, the sample seems to be drawn to the pole piece .  At 10 amps, the lower right corner of the Dewar relaxes.
Link to quenching test video









Comments

Popular posts from this blog

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the: