Skip to main content

The Similarity Transform: Things I hadn't noticed

As soon as I got back into graduate physics, I started noticing transforms of matrix operators that looked like this:

A is the original matrix operator A prime is the matrix operator transformed by gamma.  Gamma is any kind of vector transformation.  It might be a rotation, or a change of coordinate system, (from Cartesian to polar for example)..  Presented in this manner, the origins of the transform, A acting on gamma and the product acted upon by the inverse of gamma didn't make any sense to me.  I found an article, (I'll try to get a reference up here soon), that gave a very detailed very academic explanation, but it was still no good for me.  Recently, a professor finally went through the steps that arrive at the above.  It was short concise, and made sense!  Here they are.

Gamma is a matrix that transforms a vector into another vector, say... x prime into x.  I mentioned that already.

The inverse of gamma will convert an x vector into an x prime vector.

A is defined to be a matrix that operates on an x vector and returns a y vector.


Suppose we want to transform A so that it can operate on x prime vectors and return y prime vectors like this.



We can rewrite the x vector as an x prime vector like this:

.

The next step is to change the y vector into a y prime vector.

And we're done.  From here, you can see that since we wanted to get


then


Like I said, there's a deeper meaning to all of this, but now I know the simple steps that lead to the end result.


Comments

Popular posts from this blog

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the: