I tried out a little quickie experiment in the lab this afternoon. In short: a coil with a changing current, (AC), placed on a non-ferromagnetic conductor, like aluminum, will induce an opposing magnetic field and levitate. You can read all about the effect caused by eddy currents, on Wikipedia, and watch what happened in the lab here:
There's an assymetry to the form of the two Maxwell's equations shown in picture 1. While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero. This is typically explained in the following way. While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare. That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2]. Cabrera was utilizing a loop type of magnetic monopole detector. Its operation is in...
contd...
ReplyDeletein the circle?
How many turns of copper wire? (just a guess of how much wire to use?
If you could answer these I would be grateful.
Lance
The power was 60Hz 120V regulated through a variac to about 30V. The coil is insulated magnet wire. I don't know, but I suspect there are about 300 turns. It's just an old coil I pulled out of the junk pile. The metal underneath is about 3/4 inch think aluminum.
ReplyDelete