Skip to main content

Notes on Working with Schrodinger's Equation



I got a quick lesson on the importance of graphing my work this afternoon. After diligently calculating the expectation position of a particle as predicted by the Schrodinger equation:



I came up with the value 1/2λ.

After a little bit of thought, it occurred to me that the Schrodinger equation was symmetric about 0 and that if I was guessing the expectation, or average, value for the position of a particle predicted by the equation, I'd guess zero. So, I graphed the Schrodinger equation for the potential. Just for good measure, I went ahead and graphed the integrand of the expectation integral as well. Sure enough, the Schrodinger equation is symmetric about 0 and the areas under the expectation integrand curve to the left and right of (x=0) cancel out.

Upon checking my work I realized that I was missing a factor of x in my original integration. I multiplied the x back in and everything worked out just like the graph said it should! Not bad for taking a 20 year break between quantum mechanics study sessions. I went ahead and added the integrand for the square of x, used to calculate the standard deviation, to the graph above as well.

NOTE: Had I graphed the integrands first, I could have gotten out of doing the integral for the expectation value altogether. The areas to the left and right of 0 obviously cancel.

NOTE 2: The graphs above were created with Google Docs which is free. No pricey graphing packages required these days! No more excuses!

Have fun with it!

Comments

Popular posts from this blog

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in...

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain ...

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:...