Skip to main content

NaI Scintillators in Liquid Helium

After yesterday's attenuation calculations, I'm trying to find out if I can place the scintillator directly into the liquid helium Dewar to avoid the attenuation of flux due to the Dewar walls and solenoid windings.  I came across an interesting article that was a portion of Fernand Bedard's PhD dissertation in 1956.  It's interesting for lots of reasons.  First, Bedard was working with Hans Meissner.  Second the article mentions currents across insulating junctions with superconductors on either side in 1956, several years before Josephson would do his Nobel prize winning work on Josephson junctions.  Finally, Dr. Bedard wound up working for the NSA!

Then, there's the pragmatic stuff.  It looks like they did place their NaI crystal in the Dewar.  The article also mentions that they were able to load 2 liters of liquid helium using only 5.5 liters.  They apparently lost only 3.5 liters to boil off!  The article also has an excellent description of their procedure and of issues they had with their photomultiplier tube.  A diagram of their Dewar is shown below, (picture 1).


References:
1.  Bedard on Dewar and photomultiplier usage and of course, electrons from superconductors
http://dx.doi.org/10.1103%2FPhysRev.102.667
Bedard F., Meissner H. & Owen G. (1956). Investigation of Electron Emission from Superconductors, Physical Review, 102 (3) 667-670. DOI:

Other Handy References on NaI Detectors
Link to nice article in ROSI on NaI detectors

Increased counts down to 0 C

Temp vs. response time



Comments

Popular posts from this blog

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim