Skip to main content

On the Importance of Trig Identities in Quantum Mechanics

Just a few random thoughts on why I wish I'd done a better job of memorizing my trig identities in high school.

Here's an approximate high school conversation of mine regarding trigonometric identities with my teacher Mr. Tully, (who is awesome and by the way, who is also a rancher, and also by the way is not the guy pictured to the left(picture 1)... read on!)

Me:  "Why do I have to memorize these 40 or so trig identities[2]?" (yes even then, I referenced my utterances"

Mr. Tully:  "Because they'll be very important for what you want to do later." (he knew I wanted to be a physicist)

Me, (typically not thinking 'later' might be after next week):  "Yeah... I'm not seeing it..."

Fast forward a bit to grad school.  Twice in the last week, trig identities were make or break features of homework problems.  I didn't pick up on the necessary identities in electromagnetism, and I'll probably get a B instead of an A on my homework.  A B in grad school is a C in undergrad.  Even more importantly, I didn't get to see the 'cool features', (no, really, I'm sure they were cool features), of the solution because I didn't get to it.

In quantum mechanics homework tonight, I was working on a tunneling problem.  I used the following two identities and wouldn't have been able to move forward without them (picture 2):


What's tunneling?  In the world we're used to, when an object encounters a barrier like the one shown below(picture 3), it will just bounce off.


In the energy and size levels where quantum mechanics applies though, a particle can actually just move right through the barrier and turn up on the other side.  So, why's that important?

Here's one reason.  If you have an understanding of quantum tunneling, then you can do things like the guy pictured above (picture 1), Ivar Giaver, who before he even had a PhD performed an experiment that found that electrons could tunnel from a superconductor across an insulating barrier into another superconductor.  After that, he won the Nobel prize.  His discovery also enabled magnetic resonance imaging, (MRI), technology to be used as a medical diagnosis tool, which is kind of cool.

And that is why I should have memorized my trig identities.

References:
1.  http://en.wikipedia.org/wiki/Ivar_Giaever

2.  http://en.wikipedia.org/wiki/Trigonometric_identity

Picture of the Day: (picture 4)


From 2/7/13

Comments

Popular posts from this blog

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim