Skip to main content

Pink Clouds and Science Reruns

A pink cloud was reported in the early morning, (pre-sunrise), sky over Arizona on Wednesday[1]. NASA and the DOD soon thereafter took credit for the cloud.  They had launched a rocket into the ionosphere where it released a vapor that created the cloud.  The purpose of the experiment was to study the effects of the vapor on the ionosphere itself.  The article, referenced above from ABC, said:

"The experiment, which also involved using ground stations to take measurements of the ionosphere, was intended to develop scientific explanations for ionospheric disturbances and their effects on modern technology, officials said."

This has all been done before[2] as it turns out!  In 1956 the Air Force launched two missiles from White Sands Missile Range with payloads of nitric oxide.  The gas released in the ionosphere created a glowing cloud described as being 'yellow-red'[3] in color.  They were studying the ionosphere as well, which, back in 1958, was described with a bit more panache [4]:

"In this electronic age, everybody knows that the ionosphere is an electrified upper atmosphere region that bounces off radio waves around the globe."
The 1958 definition of the ionosphere also nicely explains what the experiment in both cases was looking for: how radio wave propagation was effected, (also shown in the following diagram from the same 1958 piece):

The folks at Mysterious Universe[5] seem a little peeved about the DoD's failure to reveal what the specific released vapor was, but while the vapor could have been a number of things, it's interesting to note the color of light emitted by ionized nitrogen:

1.  ABC News report:

2.  Coverage of the earlier experiment here:

3.  Journal of Chemical Physics coverage of the 1956 experiments, (apologies for the paywall)

4.  1958 Popular Mechanics article describing the first series of experiments

5.  Mysterious Universe


Blogger said…
Did you know you can shorten your links with AdFly and receive money from every visit to your short urls.

Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…