Skip to main content

Bahnson, Griggs, World War II Radar, and Nazi Bomb Scientists

How a car accident in 1936 turned physicist, David Tressel Griggs, into WWII radar test pilot who ferried other scientists to the European front to capture Nazi atom bomb scientists.

Here's what I already knew:
Agnew Hunter Bahnson Jr., in a rather indirect manner, provided both the airplane and the test pilot used by MIT's Radiation Lab to test a new WWII technology, radar.  In 1936, Bahnson, who was a resident of a Harvard dormitory, took one of his geophysicist dorm-mates, David Tressel Griggs on a hiking trip through the Caucasus Mountains.  The Caucasus range connects the Black Sea with the Caspian Sea.  Bahnson's and Grigg's hiking trip ended before it even began, however, when Agnew swerved off the road to miss a bicyclist and struck a tree[1].  Griggs narrowly missed losing both of his legs to amputation.

Hunter's father had taken out an insurance policy for the trip.  Grigg's used his payment to purchase a Luscombe airplane.  His injured legs made him ineligible for military duty.  Still wanting to contribute in some way, Griggs piloted his plane for the test runs of the radar system being built at the MIT Radiation Labs.  After the system became operational Griggs traveled with it to Europe and flew along on bombing runs that utilized the system.  During one bombing run Griggs found himself hanging from the bottom of the plane after kicking open a blocked bomb bay door.

Here's What I Found out This Week
Grigg's did more than serve as a radar advisor.  His wartime duties provided Griggs with a rather unique civilian privilege: clearance to fly over wartime Europe.  Griggs made use of this privilege to shuttle scientists for the Alsos mission.  The soldiers and scientists of the Alsos mission, (a predecessor to Operation Paperclip), captured and interrogated German A-bomb scientists.  Samuel Goudsmit--one of the physicists who literally got the electron spin equations half right[2]--was the technical leader of the mission

Griggs would go on to lead his own scientific retrieval mission in Japan[4].  One of his cohorts on the mission was Karl Taylor Compton, brother of Arthur Compton of scattering fame, but who is better known around here for his water based Foucault Pendulum![3]

Here's what else I'd like to know
Why did Bahnson know Griggs at all?  I've found evidence that he attended school at the University of North Carolina-Chapel Hill and that he knew about, (or should have known about), the Harvard society of Junior Fellows[5].  I haven't found any evidence yet though that Bahnson was ever a student at Harvard.

How close were Bahnson and Griggs after 1936?  Bahnson mentions Griggs in reference to some of Bahnson's thoughts on anti-gravity.  He seems to mention him as a bit of a bona-fides as he's asking Bryce and Cecile Morette-DeWitt to take the helm of the Institute for Field Physics which Bahnson helped get started at his alma-mater in North Carolina.  Did Bahnson and Griggs sit around swapping gravity theories over brandies and cigars?  Did Griggs feel that any of Bahnson's theories held any water?  I don't know... yet.





References:
1.  http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/griggs-david.pdf

2.  https://books.google.com/books?id=3v2ttYJ_d2kC&lpg=PP1&dq=alsos%20goudsmit&pg=PP1#v=onepage&q&f=false

3.  http://copaseticflow.blogspot.com/2013/02/turning-water.html

4.  Combat Scientists
https://books.google.com/books?id=8gQ1AAAAIAAJ&dq=editions:nSe9H1JQMjoC

5.  https://ia600400.us.archive.org/zipview.php?zip=/35/items/dailytarheel_sep23_1932_jun5_1933/dailytarheel_sep23_1932_jun5_1933_pdf.zip&file=dailytarheel_sep23_1932_jun5_1933_pdf/dailytarheel_sep23_1932_jun5_1933_0443.pdf

Comments

Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla



to the nabla for another coordinate system, say… cylindrical coordinates.



What we’ll need:

1. The Cartesian Nabla:



2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:



3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:



How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…