Skip to main content

PMT Rebuild and Can Crusher Code Progress: Lab Book 2014_07_24

The workbench before starting this morning.

Lab Book 2014_07_24     Hamilton Carter

Most of the day was spent building a new base for the PMT on the NaI detector.  I found almost all the necessary capacitors and was able to get the only size I couldn’t find by combining two other capacitors in parallel.  Only the connections to the coaxial connectors remain to be done.  The can crusher code port is progressing.  The initial implement of the function that models the movement of the can is complete.  There’s a bug in it that needs to be fixed.

Rebuilding the PMT
Found all the capacitors that will be required to build up the new base.
Should you want to rebuild the socket again, look for a box like this.

This is the portion of the circuit that has capacitors.  The capacitors that are going to be used have been laid out on the schematic as a visual check.

Here’s the schematic for the suggested PMT base circuit from the RCA tube manual[1].

These are all ceramic disc capacitors.  The older ones actually feel scratchy between my fingers, just like ceramic.  Go figure.  It’s cool that they don’t have the plasticized coating that’s on the others.
This is the new base with only a few resistors installed. the light brown insert in the middle is the base of the PMT tube.  This is a test fit to see how low components can be placed without interfering with the PMT tube.

Here’s the new base with all the parts installed.  All that remains is attaching the last few leads to the coaxial connectors.

Can Crusher Code[2]
The move_can function was implemented.  At the moment, it conks out after 210 steps or so.  The velocity of the imploding can wall doesn’t ever seem to change.  The error occurs in the mutual inductance function  I’m guessing there’s a bug in move_can and the mutual inductance function is giving up because the can has moved to an unphysical configuration, something like having a negative radius. A quick check has revealed that some of the can radii are going negative and others are getting huge on the order of ten to the eighteenth power.
1.  RCA 45xx PMT manaual

2.  Can crushe code on github

Hirsch's theory of hole superconductivity proposes a new BCS-compatible model of Cooper pair formation when superconducting materials phase transition from their normal to their superconducting state[1].  One of the experimentally verifiable predictions of his theory is that when a superconductor rapidly transitions, (quenches), back to its normal state, it will emit x-rays, (colloquially referred to here as H-rays because it's Hirsch's theory).

A superconductor can be rapidly transitioned back to its normal state by placing it in a strong magnetic field.  My experiment will look for H-rays emitted by both a Pb and a YBCO superconductor when it is quenched by a strong magnetic field.
This series of articles chronicles both the experimental lab work and the theory work that’s going into completing the experiment.

The lab book entries in this series detail the preparation and execution of this experiment… mostly.  I also have a few theory projects involving special relativity and quantum field theory.  Occasionally, they appear in these pages.

Call for Input
If you have any ideas, questions, or comments, they're very welcome!

1.  Hirsch, J. E., “Pair production and ionizing radiation from superconductors”, 


Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…