Skip to main content

A Little News, Two Approximations, And A Few Graphical Derivatives To Go With Your Coffee

Good Morning!  While drinking my coffee after getting a full night's sleep, (hooray for happily sleeping seven month olds!!!), I came across a cute little satellite and some useful approximations.

The Estonian University of Tartu has successfully placed a student built and student operated cubesat into orbit.  The satellite will deploy an electrodynamic tether and test the ability of the device to propel the space craft by exploiting the force between the electric charge placed on the tether by the satellite and charged particles in the solar wind.  For those that didn't know, the electronic tether propulsion concept was patented by Robert Forward, a physicist who worked for Hughes research during the '60s and went on to become a famous scifi author[5][6].  Folks with ham radios can listen in on the satellite at 437.250 MHz and 437.505 MHz.  M5AKA did a great write up on the little cubesat[1].  The satellite tracker here at Copasetic Flow has been updated to track ESTCUBE 1.  The passes over Texas A&M for the next 24 hours are shown in picture 1.

For one of the cutest satellite deployments ever, watch the ESTCUBE 1 mission video on youtube [4].

I'm reading up on general relativity[3] this morning for one of my research projects.  The paper zipped right through two approximations we use all the time that used to give me pause, so I thought I'd put a bit more detail here.

The first has to do with our propensity to turn quadratic equations into linear ones if the variable involved is much less than one (picture 2).

Because squaring a number that is smaller than one makes it much smaller than itself, and much small than one, after performing the binomial multiply, we just drop the squared term.

The second approximation has to do with the Taylor series for the exponential function.  Once again, assuming the argument is much smaller than one, we just jettison all the terms in the Taylor series shown below except for the first two.

Interestingly, in this case both approximations give the same result.

Graphical Derivatives
Finally, the article I'm reading mentioned that the second derivative of the absolute value of z is the Dirac delta function with z as the argument   I don't have a clue how to show this strictly mathematically, but in some class along the way, they taught us to take graphical derivatives.  The pictures 3, 4, and 5 illustrate the technique.

First, the function we're starting out with, the absolute value of z.  Note that it has a slope of -1 to the left of the origin and a slope of +1 to the right of the origin. (picture 3)

So, we can just draw out the derivative, (the slopes), based on the graph to get (picture 4)

Which we can write in terms of the Heaviside step function as shown.  Notice that it has a slope of zero on either side of the origin with an infinitely sharp slope at the origin where the value changes from -1 to +1 at 0.

The infinite slope is just represented by a Dirac delta function as shown in picture 5.

Except there's a little problem.  While you can read off the form of the derivative graphically, you have to include a little knowledge of distributional functions to get things just right.  There should be a factor of two in front of the delta function above.  The weighting factor is equal to the size of the jump in the function that the derivative is taken for.  Since ours goes from -1 to +1, the factor is 2.

For more on the relationship between Heaviside step function, the Dirac delta function, and the folks they're named after see reference 2.

1.  Excellent writeup on ESTCUBE 1 from M5AKA

2.  Heaviside and Dirac

3.  AJP article on general relativity
Jones P., Muñoz G., Ragsdale M. & Singleton D. (2008). The general relativistic infinite plane, American Journal of Physics, 76 (1) 73. DOI:

Open access version:

4.  ESTCUBE 1 mission video

5.  Forwards patent

6.  More on Forward


Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…