Skip to main content

Random thoughts on Matrices, Differentiation, and Fourier Transforms

Today is electricity and magnetism midterm day, so I'm just going to jot down a skeleton of a thought process about the quantum mechanical phase operator research I've been reading for the last few days, and then I have to run.

In matrix rperesentation, the derivative of a polynomial can be represented as[1]:


for a third degree polynomial and extended for higher degrees.  Integration looks like this[2]:

and can again be extended.  In the article by Nieto[3], he quotes Louisell as saying this about the discrete cosine and sine functions in quantum mechanics.


In the Fourier domain where functions are represented by series of sine and cosine functions, derivatives are constructed simply by multiplying by i, (the square root of negative one), times frequency, and integrals are constructed by dividing by i times the frequency.

Also, in relation to the EE discrete signal analysis, these two figures from the Nieto RMP article[4], (pictures 4 and 5):



To me, this all has the feel of discrete time signal processing, so I'll leave you with a link to the discrete Fourier transform.


References:

2.  Integration
http://demonstrations.wolfram.com/TheDerivativeAndTheIntegralAsInfiniteMatrices/

3.  Nieto's article
http://arxiv.org/abs/hep-th/9304036v1z

4.  Nieto RMP article
http://dx.doi.org/10.1103%2FRevModPhys.40.411
CARRUTHERS P. & NIETO M. (1968). Phase and Angle Variables in Quantum Mechanics, Reviews of Modern Physics, 40 (2) 411-440. DOI:

5.  Discrete Fourier Transform
http://www.dspguide.com/CH8.PDF

Comments

Popular posts from this blog

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim