Skip to main content

Physics, Movies, and the Columbia and MIT Radar Labs

In the comments to yesterday's post on the Lamb shift[1][2], +Bruce Elliott and I were discussing how physics history could make for great movie ideas .  This morning, it occurred to me that several of the journal articles I've read recently share a common theme, the goings on in and around the MIT and Columbia radiation, (radar), labs circa World War II. The whole thing might make a great intertwined stories movie.  So, without further ado, here's a brief summary of a few of the players, final exams are coming up, so I'll spread this out a bit over the next few weeks.

Schwinger (picture 1), Feynman,and Tomonaga are three of the biggest names in quantum electrodynamics, (QED).  In addition to his QED work, Schwinger was apparently a pivotal figure at the MIT radiation laboratory where he did theoretical work on radar.  The Swinger-Lippmann scattering theory[3], a sort of framework for building other scattering theories came out of waveguide work done by Schwinger and Lippmann as well as others during the war.  He figures heavily in the MIT Radiation Laboratory Series volume on waveguides.  He was of course present at the famous Shelter Island conference.  He's also acknowledged by Israel Senitzky for 'helpful discussions' regarding coherent state work that Senitzky was doing.

Israel Senitzky[7]
The most prominent mentions I've found for Senitzky are found in Signal Corp and Radiation Laboratory history books which refer to him mostly as an administrator that served as the liaison to  the Columbia Radiation Laboratory program for the Army.  In the scientific literature however, he turns up as a maser scientist.  He worked on coherent states before coherent states were cool[6].  In addition to being a physicist, Israel Senitzky was a childhood violin virtuoso[4].  His daughter went on to be an MD who pioneered testosterone treatments in the 1980s and was written up in People Magazine[5].

David Tressel Griggs[8]
Griggs would be the Indiana Jones/Tony Stark character of the movie.  He turns up at the MIT radiation laboratory as the test pilot for their aircraft detection radar projects.  He later went on to be a combat adviser during World War II flying on missions that utilized the radar systems he helped to develop.  He almost fell from a the plane when he kicked open a stuck bomb bay door during a bombing run.  After that he was grounded as the military brass felt he was far more valuable as a scientist than as a bomb.

A few years later Griggs turns up as the chief scientist for the Air Force.  He was instrumental in convincing Teller to run Lawrence Livermore laboratory where he and Teller both influenced underground nuclear bomb testing.  He was also friends with Agnew Bahnson Jr. who will turn up in a later post about the very cool sci-fi/history movie that could come out of the very real 1950's race for anti-gravity, (spoiler: nobody won the race as far as I know).

1.  Post on G+ with comment thread

2.  The Lamb shift post

3.  Lippman Schwinger scattering
Lippmann B. & Schwinger J. (1950). Variational Principles for Scattering Processes. I, Physical Review, 79 (3) 469-480. DOI:

4.  Senitzky as violinist

5.  People on the other Dr. Senitzky,,20127693,00.html

6.  Senitzky on coherent states
Senitzky I. (1954). Harmonic Oscillator Wave Functions, Physical Review, 95 (5) 1115-1116. DOI:

7.  Copasetice Flows on Senitzky

8.  The Cannonical Hamiltonian on David Tressel Griggs


Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…