Skip to main content

Calculating x-ray Attenuation

I received detailed plans for the liquid helium Dewar that's going to be used in the h-ray experiment yesterday and spent some time calculating the amount of attenuation we can expect to the x-rays theoretically produced by our quenched Pb superconductor.  I'm making the assumption that most of the attenuation of x-ray flux will come from the aluminum walls and aluminum backed insulation, not from the plastic walls.  A cross-section of the walls is shown to the left, (picture 1).  The wall on the left of the cross-section is made of .125 inch thick aluminum.  The five sheets of insulation between the inner and outer walls are Mylar coated with .003 inch thick aluminum.The inner wall on the right hand side of the cross section is constructed of .1 inch of 'low thermal conductivity plastic'.  This gives me a grand total of 0.35 cm of aluminum between the source and the   detector.  The graph shown below (picture 2) is the amount of flux transmitted through the aluminum with respect to energy.  The attenuation values were taken from an online attenuation calculator[1]. The attenuation value without coherent scattering was used and was multiplied by the density of aluminum to arrive at a linear attenuation number mu.  The percent of transmitted flux was then calculated as

exp(-mu*thickness of material)

In addition to the attenuation due to the Dewar walls, I did two more calculations to get a ball park figure for how much attenuation I should expect from the superconducting solenoid magnet that will surround the sample and that is made from copper clad niobium alloy wire that is .045 cm thick.  The first graph is for copper of this thickness and the second graph is for Niobium, (pictures 3 and 4).

The theory predicts x-rays of about 382 keV energy.  If x-rays are produced at a much lower energy, say around 50 keV, it's conceivable that they could be missed with the detector outside the liquid helium Dewar.

Any thoughts, pointers, or questions are always welcome!

1.  Aluminum attenuation

2.  Copper attenuation

3.  Niobium attenuation

4.  x-ray attenuation documentation


Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…