Skip to main content

EM and Complex Analysis

There are an increasing number of apparent correspondences between EM this semester and our section on complex analysis in math methods last semester.  These are just notes on a few of them.

Uniqueness of the Electrostatic Potential Solution and Liouville's theorem
After stating that we would be solving Poisson's equation

to determine electrostatic potentials, our professor then launched into a proof that the solutions, once found, would be unique.  We first defined a potential psi equal to the difference between non-unique solutions, (assuming for the moment in our proof by contradiction that there could be more than one unique solution).  We placed psi back into Poisson's equation and ran through the following steps:

Ultimately we wound up proving that at best psi is a constant, but that it must be zero everywhere on the surface that defines the Dirichlet boundary conditions that the two 'non-unique' solutions both satisfy, so it's constant value must be zero and the two 'non-unique' solutions are in fact the same.

Here's the question.  At the step shown above and highlighted here:

could we have fast tracked the entire proof by invoking a result from complex analysis?  In complex analysis we learned that analytic functions satisfy the condition on psi highlighted above, (Laplace's equation).  We also learned a version of Liousville's theorem that went:

"A function which is analytic for all finite values of z and is bounded everywhere (including infnity) is a constant."

It seems this would have immediately brought us to the conclusion that psi was constant and things could have moved on from there.

Finding Potentials Actually Just Complex Analysis?
There are an accumulation of pointers in my mind that what we're doing when solving for potentials is very closely related to complex analysis and in particular to Cauchy integrals.  When solving for the potential within a volume, we're told that either the value of the potential everywhere on the surface bounding the volume, (Dirichlet boundary conditions), or the value of the normal derivative of the potential everywhere on the boundary, (Neumann boundary conditions), is sufficient information.  This looks a lot like the Cauchy integral idea where if we know the values of a function around a contour, we can calculate the value of the function at any point inside the contour.  Is there anything to this?

Please excuse the obligatory coffee stains.

Picture of the Day:
From 1/23/13


Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…