Skip to main content

Bra Ket Notation

Just a few notes here about shiny things that caught my eye regarding bra and ket notation in the quantum mechanics II lecture last night.

Inner Products
Inner products are the Hilbert space, quantum mechanical, state vector equivalent of the dot product for more standard vectors like position or velocity.  The unit basis ket , at least in our class, is written as

where j is the index of the component.  Associating back to Cartesian coordiantes, 1 would denote x, 2 would denote y, and 3 would denote z.  The ket vector is the same symbol in a ket and when the two are applied to each other we get the inner product


In other words, the inner product only produces contributions from like basis vectors, just like the dot product.

So here's the cool bit, the following all accomplish about the same thing, they find a number proportional to the magnitude of the component of one vector, lying along another vector whether those  vectors are what we most typically call vectors, or what we call bras and kets, or what we call wavefunctions:

The Projection Operator
Applying the following notation, (the projection operator), had continued to confuse me until last week.

To pull out the portion of a bra vector that points along the basis vector u sub j, the above can be applied as follows:

Applying the projection operator always seemed a bit daunting to me until I saw the entire operation written in several steps utilizing the associative property and the fact that bras and kets commute with scalars as


Cool note:
The projection operator is an example of an outer product.  An outer product of two vectors produces a square matrix.  The trace of the matrix is equal to the dot, (or inner), product of the two vectors.

Picture of the Day:
From 1/21/13


Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla

to the nabla for another coordinate system, say… cylindrical coordinates.

What we’ll need:

1. The Cartesian Nabla:

2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:

3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:

How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…