Skip to main content

Electromagnet Impedance

The data taken last week showed a linear dependence between the voltage measured in the pick-up coil when the superconductor is levitated and the frequency of the current driving the levitating electromagnet.



While reading an article on a susceptometer for superconductors, I came across the graph shown below that shows the decrease in the magnetic field of a solenoid driven at 5 V rms as frequency is increase.  A solenoid is an inductor with an impedance that is linearly dependent on the frequency of the current flowing through it.  The drop in the magnetic field is a result of of the impedance of the solenoid increasing with increasing frequency and reducing the current trough the coil.






I'd like to see if the linear increase in the voltage required to attain levitation is just a result of the increasing impedance of the electromagnet.  My first task was to determine a relationshiop between the pick-up coil voltage and the voltage driving the electromagnet.  To do that, I attached one channel of the oscilloscope to the supply leads of the electromagnet and another channel to the pick-up coil leads.  With the oscilloscope in x-y mode, the first channel is used as the x sweep voltage and the second channel is used as the y sweep voltage.  This resulted in the waveform shown below:

Taking the slope of the loop, gives about 26 mV on the pick-up coil for every 5V on the electromagnet supply.  Using this slope, the data taken last week can be related back to the electromagnet's supply voltage:

The data point near 180 V on the calculated graph seemed somewhat unrealistic at first because the amplifier docuemntation specifies a maximum voltage swign of 93 V into 8 ohms.  The electromagnet, however, has an impedance of about 28 ohms at these frequencies.  Just to perform a sanity check, I'm plugging an estimated rms output power of 1000 watts into  the following equation:

which can be rearranged to give an rms voltage of:

Using a power estimate of 1000 Watts and a driving frequency of 230 Hz, I wind up with a peak voltage of roughly 229 volts, so my data fits within the estimated maximum output voltage from the amplifier.

If the voltage-frequency line in the levitation data was just due to impedance effects I'd expect to see a flat line when graphing the current through the electromagnet vs. frequency.  In other words, the voltage just had to be increased in order to keep the current constant.  I'm modelling the electromagnet as the following circuit based on the reading of an impedance meter:

This gives me a calculated current vs. frequency that looks like:


The current line isn't flat, so there are other things going on.  Bean's model of type II superconductors in AC magnetic fields predicts a power loss that is linear with increasing frequency.  I'll take a look at that tomorrow.


Comments

Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla



to the nabla for another coordinate system, say… cylindrical coordinates.



What we’ll need:

1. The Cartesian Nabla:



2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:



3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:



How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…