Skip to main content

Compton Scattering Paper Mislabeled? It's Obvious... Not

This installment of “It’s Obvious. Not!” looks at:

Periodical: “Physical Review” Volume: 21 Page: 483, 486
Title: "A Quantum Theory of the Scattering of X-Rays by Light Elements"
Author: Arthur H. Compton

Excerpt from page 486:

In the above excerpt, Compton discusses how to calculate the momentum of an electron that caused x-ray or gamma scattering. The momentum added to the electron is the momentum of the incident photon minus the momentum of the scattered photon.

Problem: The angle of scattering, (theta), appears to be mislabeled in the above figure vs. the usage of the angle in formula 1.

In formula 1, Compton calculates the magnitude of the electron momentum as the vector difference of the momentum of the incident and scattered photons. To subtract two vectors, you place their tails together, the resulting vector that points from the head of the second to the head of the first is the difference vector as shown below and described in this Wikipedia article.

To get the magnitude of the difference vector given the magnitude of the other two vectors, you can use the Law of Cosines and the figure shown below.



And that's just what Compton does to arrive at formula 1... almost. If you read the excerpt from Compton's article carefully, you'll see that the last term of the formula for the electron's momentum magnitude is added rather than subtracted. Per normal, this unexpected change makes the derivations further along in the paper come out quite nicely. However, if you perform the magnitude calculation with the labeled value of theta, the last term has to be subtracted, rather than added, per the law of cosines.

To make everything comes out correctly, it appears that the angle that must be used is not theta, but the supplementary angle, pi minus theta. The cosine of pi minus theta is the negative of the cosine of theta which cancels Compton's sign change in the last term. Compton may have indicated this choice of angles in the text with the phrase:

Have any thoughts on this? Please let me know. I might be wrong, in which case it would be great to find out the real explanation!

Comments

dark_faust said…
You're explanation seems the most likely, (-)(-) = +

IMHO: Choice of angle (or coordinates) was the culprit for most of these sign problems. This is were the professors would say, "It is a trivial exercise to show that a judicious choice of angles leads to the direct solution."

Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla



to the nabla for another coordinate system, say… cylindrical coordinates.



What we’ll need:

1. The Cartesian Nabla:



2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:



3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:



How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

Lost Phone

We were incredibly lucky to have both been in university settings when our kids were born.  When No. 1 arrived, we were both still grad students.  Not long after No. 2 arrived, (about 10 days to be exact), mom-person defended her dissertation and gained the appellation prependage Dr. 

While there are lots of perks attendant to grad school, not the least of them phenomenal health insurance, that’s not the one that’s come to mind for me just now.  The one I’m most grateful for at the moment with respect to our kids was the opportunities for sheer independence.  Most days, we’d meet for lunch on the quad of whatever university we were hanging out at at the time, (physics research requires a bit of travel), to eat lunch.  During those lunches, the kids could crawl, toddle, or jog off into the distance.  There were no roads, and therefore no cars.  And, I realize now with a certain wistful bliss I had no knowledge of at the time, there were also very few people at hand that new what a baby…

Lab Book 2014_07_10 More NaI Characterization

Summary: Much more plunking around with the NaI detector and sources today.  A Pb shield was built to eliminate cosmic ray muons as well as potassium 40 radiation from the concreted building.  The spectra are much cleaner, but still don't have the count rates or distinctive peaks that are expected.
New to the experiment?  Scroll to the bottom to see background and get caught up.
Lab Book Threshold for the QVT is currently set at -1.49 volts.  Remember to divide this by 100 to get the actual threshold voltage. A new spectrum recording the lines of all three sources, Cs 137, Co 60, and Sr 90, was started at approximately 10:55. Took data for about an hour.
Started the Cs 137 only spectrum at about 11:55 AM

Here’s the no-source background from yesterday
In comparison, here’s the 3 source spectrum from this morning.

The three source spectrum shows peak structure not exhibited by the background alone. I forgot to take scope pictures of the Cs137 run. I do however, have the printout, and…