Skip to main content

Cosine Laws, Polyhedra, and Legendre Functions



I didn't make it into the lab today what with the holiday and all, but I did have time to read one of my favorite journals, American Mathematical Monthly from the +Mathematical Association of America .  The journal features a very interesting article[1] by Marshall Hampton[3] about cosine identities.  The article got me back to musing about solving for potentials with spherical symmetries and Legendre polynomials again[5].  I don't have time to work through this now, so I'm just recording my meandering thoughts here for future self, and anyone else that would like to take a look.

Hampton writes down the generalization of the law of cosines for polyhedra rather than just the plane, (pun intended), old triangle.  Here it is

$$0 = \sum_j\vec{n}_i\cdot\vec{n}_j\Delta_j = \Delta\left(i\right) - \sum_j c_{ij}\Delta_j$$

Where, $$c_{ij}$$ is the cosine between two faces of the polyhedra i and j, and $$\vec{n}_i$$ is a vector field normal to the i'th face.

Dr. Hampton states that this expression is arrived at through the divergence theorem for polyhedra.

Here's the question, sketchy as it may be.  Since the Legendre polynomials are a solution of Laplace's equation under certain boundary conditions, and since the polynomials can be generated by the law of cosines, in light of the series of cosines above, if we extend the sum out to an infinite number of identical faces for the polyhedra, can we arrive back at the Legendre polynomials?

In addition to his recent article in AMM, Dr. Hampton has produced quite a bit of other material worth checking out [2][3][4].

References:
1.  http://www.jstor.org/stable/10.4169/amer.math.monthly.121.10.937
sadly, behind a pay wall, but see [3]
2.  Marshall Hampton's mathematical coloring book
http://www.d.umn.edu/~mhampton/mathcolor17b.pdf
3.  Marshall Hampton's home page
http://www.d.umn.edu/~mhampton/
4.  Marshall Hampton on Diff Eqs and Sage
https://books.google.com/books?id=78cSvjHo1zUC&lpg=PA233&ots=LZjUB_iA-x&dq=Marshall%20Hampton%20cosines&pg=PP1#v=onepage&q&f=false
5.  Legendre polynomials on Copasetic Flow
http://copaseticflow.blogspot.com/2013/01/law-of-cosines-and-legendre-polynomials.html

Comments

Popular posts from this blog

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in...

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain ...

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:...