Skip to main content

Selling Science with Glossy Pictures and FTL Travel Baby!!!

The Washington Post published pictures of NASA's concept of what a Alcubierre drive spaceship might look like.  A few pundits immediately pointed out that perhaps hyping what amounts to a set of mathematical equations with a spacecraft design might not have been the classiest move on NASA's part.  NASA collaborator Mark Rademaker[1] maintains it was done with the intent of convincing people that STEM is cool, you know, 'for the kids'.  Here's Mark's big, glossy, futuristic design


It's cool and soooo pretty!

Discussion of how STEM should be sold aside, there are now conversations circulating the internet regarding whether or not the ship would violate causality by flying faster than the speed of light.  The answer is, that this might be an issue if the ship actually violated the speed of light by traveling 4.3 light years in 14 days.  As it is though, it doesn't.  Read on:

Travelling Faster than the Speed of Light Without Really Trying, (but not really)
The description in the Washington post article triggers a pretty common misconception:

"If an object reaches a distance x light years away in under x years, then it must be travelling faster than the speed of light."

What the article failed to mention is that the 14 days quoted is in the reference frame of the ship.  The equation for the distance travelled with respect to time in the frame of the ship, (known as proper time), is

$distance = \dfrac{c^2}{a}cosh\left(\dfrac{at}{c}\right)-\dfrac{c^2}{a}$,

where $a$ is the acceleration of the ship and $c$ is the speed of light.

Using this formula, it can be shown that at an acceleration of 188g, (188 times the acceleration due to gravity), the ship could reach alpha centauri in 14 days of ship time.  You might point out that 188 g's would surely smush everyone against the back wall of the ship, but the beauty of the theoretical drive described is that you carry your own gravity well along with you and therefore, you're always in freefall and don't feel the acceleration.

Here's the problem though.  The time that will have elapsed here on Earth will be much, much greater than the 14 days that elapsed on the ship.  The expression for the time elapsed on Earth is

$Earth\ time\ elapsed = \dfrac{c}{a}cosh\left(\dfrac{at}{c}\right)$,

which can be used to show that when the ship reaches alpha centauri, 817 years will have passed here on Earth.

The calculations shown here are nothing new, by the way.  Rindler applied them to the problem of relativistic space travel for the first time in 1960 in a Physical Review article titled "Hyperbolic Motion in Curved Space Time""[2].

References
1.  Mark Rademaker's blog
http://mark-rademaker.blogspot.com/

2.  Rindler, W., "Hyperbolic Motion in Curved Space Time", Phys. Rev. 119 2082-2089 (1960).




Comments

Popular posts from this blog

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in...

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain ...

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:...