Skip to main content

Cosine Laws, Polyhedra, and Legendre Functions



I didn't make it into the lab today what with the holiday and all, but I did have time to read one of my favorite journals, American Mathematical Monthly from the +Mathematical Association of America .  The journal features a very interesting article[1] by Marshall Hampton[3] about cosine identities.  The article got me back to musing about solving for potentials with spherical symmetries and Legendre polynomials again[5].  I don't have time to work through this now, so I'm just recording my meandering thoughts here for future self, and anyone else that would like to take a look.

Hampton writes down the generalization of the law of cosines for polyhedra rather than just the plane, (pun intended), old triangle.  Here it is

$$0 = \sum_j\vec{n}_i\cdot\vec{n}_j\Delta_j = \Delta\left(i\right) - \sum_j c_{ij}\Delta_j$$

Where, $$c_{ij}$$ is the cosine between two faces of the polyhedra i and j, and $$\vec{n}_i$$ is a vector field normal to the i'th face.

Dr. Hampton states that this expression is arrived at through the divergence theorem for polyhedra.

Here's the question, sketchy as it may be.  Since the Legendre polynomials are a solution of Laplace's equation under certain boundary conditions, and since the polynomials can be generated by the law of cosines, in light of the series of cosines above, if we extend the sum out to an infinite number of identical faces for the polyhedra, can we arrive back at the Legendre polynomials?

In addition to his recent article in AMM, Dr. Hampton has produced quite a bit of other material worth checking out [2][3][4].

References:
1.  http://www.jstor.org/stable/10.4169/amer.math.monthly.121.10.937
sadly, behind a pay wall, but see [3]
2.  Marshall Hampton's mathematical coloring book
http://www.d.umn.edu/~mhampton/mathcolor17b.pdf
3.  Marshall Hampton's home page
http://www.d.umn.edu/~mhampton/
4.  Marshall Hampton on Diff Eqs and Sage
https://books.google.com/books?id=78cSvjHo1zUC&lpg=PA233&ots=LZjUB_iA-x&dq=Marshall%20Hampton%20cosines&pg=PP1#v=onepage&q&f=false
5.  Legendre polynomials on Copasetic Flow
http://copaseticflow.blogspot.com/2013/01/law-of-cosines-and-legendre-polynomials.html

Comments

Popular posts from this blog

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems, there seem to be fewer explanations of the procedure for deriving the conversion, so here goes!

What do we actually want?

To convert the Cartesian nabla



to the nabla for another coordinate system, say… cylindrical coordinates.



What we’ll need:

1. The Cartesian Nabla:



2. A set of equations relating the Cartesian coordinates to cylindrical coordinates:



3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system:



How to do it:

Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables.

The chain rule can be used to convert a differential operator in terms of one variable into a series of differential operators in terms of othe…

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though!

Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very simpl…

The Javascript Google URL Shortener Client API

I was working with the Google API Javascript Client this week to shorten the URLs of Google static maps generated by my ham radio QSL mapper. The client interface provided by Google is very useful. It took me a while to work through some of the less clear documentation, so I thought I'd add a few notes that would have helped me here. First, you only need to authenticate your application to the url shortener application if you want to track statistics on your shortened urls. If you just want the shortened URL, you don't need to worry about this. The worst part for me was that the smaple code only showed how to get a long url from an already shortened rul. If you follow the doucmentaiotn on the insert method, (the method for getting a shortened url from a long one), there is a reference to a rather nebulous Url resource required argument. It's not at all clear how to create one of these in Javascript. The following example code shows how:
var request = gapi.clie…