Skip to main content

EM II Notes 2014_11_23: Homework sketches

Just a few notes on how to proceed on the penultimate homework of the semester.

We're to show that the solutions for the 30/60/90 triangular waveguide given in the last homework set will also work for a waveguide that's formed from an equilateral traingle.  The three corners of the equilateral traingle are located at $\left(x,y\right) = \left(0, 0\right)$, $\left(x,y\right) = \left(a, a/\sqrt{3}\right)$, and $\left(x,y\right) = \left(a, -a/\sqrt{3}\right)$.

This falls out immediately from last week's homeowrk.  Because the sine function is peiodic in $\pi$ over the domain from $\left(-\infty, \infty\right)$, the solution given last week in terms of sines will still evaluate to zero on the wall that falls at negative $y$. coordites.  The positive $x$ coordinates of the functions will evaluate to 0 on the wall in the same manner they did before???  There's an issue here.  It's products of the $x$ and $y$ sinusoids that all sum to zero.  These will need to be checked to determine if they still evaluate to zero.  Since the y terms are converted to x terms using the coordinates of the walls, there's very little to do in checking that things are stil OK.  Everyting converts down to a difference of cosines expressed as

$cos\dfrac{m-n}{3a} - cos\dfrac{n-m}{3a}$

However, because the three $y$ sin functions are odd, they will merely wind up with negative signs out in front that can be factored out of the entire expression.  The result will be the same.

Comments

Popular posts from this blog

More Cowbell! Record Production using Google Forms and Charts

First, the what : This article shows how to embed a new Google Form into any web page. To demonstrate ths, a chart and form that allow blog readers to control the recording levels of each instrument in Blue Oyster Cult's "(Don't Fear) The Reaper" is used. HTML code from the Google version of the form included on this page is shown and the parts that need to be modified are highlighted. Next, the why : Google recently released an e-mail form feature that allows users of Google Documents to create an e-mail a form that automatically places each user's input into an associated spreadsheet. As it turns out, with a little bit of work, the forms that are created by Google Docs can be embedded into any web page. Now, The Goods: Click on the instrument you want turned up, click the submit button and then refresh the page. Through the magic of Google Forms as soon as you click on submit and refresh this web page, the data chart will update immediately. Turn up the:

Cool Math Tricks: Deriving the Divergence, (Del or Nabla) into New (Cylindrical) Coordinate Systems

Now available as a Kindle ebook for 99 cents ! Get a spiffy ebook, and fund more physics The following is a pretty lengthy procedure, but converting the divergence, (nabla, del) operator between coordinate systems comes up pretty often. While there are tables for converting between common coordinate systems , there seem to be fewer explanations of the procedure for deriving the conversion, so here goes! What do we actually want? To convert the Cartesian nabla to the nabla for another coordinate system, say… cylindrical coordinates. What we’ll need: 1. The Cartesian Nabla: 2. A set of equations relating the Cartesian coordinates to cylindrical coordinates: 3. A set of equations relating the Cartesian basis vectors to the basis vectors of the new coordinate system: How to do it: Use the chain rule for differentiation to convert the derivatives with respect to the Cartesian variables to derivatives with respect to the cylindrical variables. The chain

The Valentine's Day Magnetic Monopole

There's an assymetry to the form of the two Maxwell's equations shown in picture 1.  While the divergence of the electric field is proportional to the electric charge density at a given point, the divergence of the magnetic field is equal to zero.  This is typically explained in the following way.  While we know that electrons, the fundamental electric charge carriers exist, evidence seems to indicate that magnetic monopoles, the particles that would carry magnetic 'charge', either don't exist, or, the energies required to create them are so high that they are exceedingly rare.  That doesn't stop us from looking for them though! Keeping with the theme of Fairbank[1] and his academic progeny over the semester break, today's post is about the discovery of a magnetic monopole candidate event by one of the Fairbank's graduate students, Blas Cabrera[2].  Cabrera was utilizing a loop type of magnetic monopole detector.  Its operation is in concept very sim